

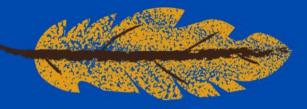
ผลกระทบของฟองอากาศขนาดจุลภาค ที่สร้างจากการตกตะกอนของไฟฟ้าต่อการเจริญเติบโตของปลานิล นายกฤษณะ พรหมพิงค์

เล็กสกุล รศ.ดร.คมกฤต

ภาควิชาวิศวกรรมอุตสาหการ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเชียงใหม่

บทน้ำ

สายพันธุ์ปลานิลที่จะนำมาวิจัยคือสายพันธุ์จิตรลดา 3 มีลักษณะเด่นคือ หัวเล็ก ตัวหนา เนื้อแน่นและมาก ด้วย ความต้องการูบริโภคที่เพิ่มขึ้น ปัญหาที่ตามมานั้นคือการใช้ เวลาในการเลี้ยงนานเป็นเวลา 8-10 เดือนพร้อมกับมีต้นทุน ที่สูงขึ้น เพื่อลดปัญหาที่กล่าวมา ผู้วิจัยพบว่ามีการเลี้ยงสัตว์ น้ำโดยเพิ่มฟองอากาศในน้ำด้วยเทคนิคฟองอากาศขนาด จุลภาค โดยผู้วิจัยจะได้นำวิธีการดังกล่าวมาประยุกต์ใช้โดย การสร้างฟองอากาศขนาดจุลภาคด้วยวิธีการตกตะตอน ไฟฟ้า



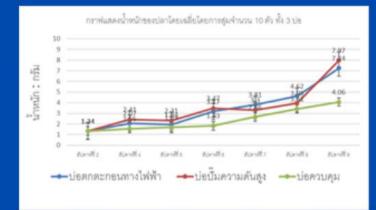
ัตถประสงค์

พัฒนาระบบการสร้างฟองอากาศขนาดจุลภาคด้วยการตก ตะกอนของไฟฟ้า และศึกษาผลกระทบของฟองอากาศขนาดจุลภาค สร้างจากการตกตะกอนของไฟฟ้าต่อการเจริญเติบโตของปลานิล

วิธีการดำเนินงาน

การกำจัดของเสีย

จัดเตรียมบ่อขนาด 0.5X0.5X0.5 เมตรและพักน้ำเป็นเวลา 1 วัน ให้ปั้มลมตลอดเวลา นำปลาขนาด 2-3 อายุ 1-2 เดือนจำนวนบ่อุละ ประมาณ 33-34 ตัว ให้อาหารเม็ดอาหารปลาในตระกูลปลาดุกยี่ห้อ CP 9920D วันละ 2 ครั้ง เช้า-เย็น



เป็นเวลา 2 ชั่วโมง และเปลี่ยนน้ำทุกๆ 7 วัน โดยพักน้ำเพื่อสลายคลอรีนอิสระ 1 วัน

เปรียบเทียบการเจริญเติบโต วัดน้ำหนักของปลานิล และคุณภาพของน้ำ

สร้างถังกรองน้ำประกอบไปด้วย หินพัมมิช และฟิลเตอร์กรองน้ำกรองน้ำ

			UMHIII	demontaria	a inte 2	00		
คุณภาพน้ำบ่อทดลอง					คุณภาพน้ำบ่อควบคุม			
rin pH		ค่า DO (มิลกรับต่อลิสร)		(คงคา) อุฒหภูมิ		efn pH	ค่า DO (มิลกรับต่อสัตร)	ботбр (вена)
ก่อน ให้	หลัง ให้	ก่อน ให้	หลัง ให้	ก่อน ให้	หตัง ให้			
7.56	7.38	4,44	5.65	16.3	16.3	7.69	4.46	16.5
7.78	7.57	3.99	4.07	23.5	24.0	7.99	3.75	21.3
7.76	7.70	3.69	4.02	24.3	24.7	7.56	3.79	22.7
7.82	7.73	3.34	3.42	22.9	23.6	7,80	3.21	22.3
7.73	7.59	3.86	4.29	21.75	22.15	7.76	3.80	20.7
	ก่อน ให้ 7.56 7.78 7.76 7.82	ท่ายน หลัง ให้ ให้ 7.56 7.38 7.78 7.57 7.76 7.70 7.82 7.73	ค่า pH ค่า ดีละกัง ก่อน หลัง ก่อน ให้ ให้ ให้ 7.56 7.38 4.44 7.78 7.57 3.99 7.76 7.70 3.69 7.82 7.73 3.34	คุณภาพน้าน่องหรั ท่า pH ท่า pO เมื่องกับต่อใจรว ก่อน หลัง ก่อน หลัง ให้ ให้ ให้ ให้ 7.56 7.38 4.44 5.65 7.78 7.57 3.99 4.07 7.76 7.70 3.69 4.02 7.82 7.73 3.34 3.42	คุณภาพน้าน่องคลอง คุณภาพน้าน่องคลอง ค่า pH คำ po เมื่อเก็บผ่อล้อง จุดเ (ผ่อน เห็น ให้ ให้ ให้ ให้ ให้ ไม่ ให้ ให้ ให้ ให้ ให้ ให้ ให้ ให้ 7.56 7.38 4.44 5.65 16.3 7.78 7.57 3.99 4.07 23.5 7.76 7.70 3.69 4.02 24.3 7.82 7.73 3.34 3.42 22.9	# เมาาพน้าบ่อนคลอง # ph #1 DO (เมษาย์) (เมษา	ค่า pH ค่า DO เมื่องกับต่อสิ่งสาว ของหญ่ย (พลาว) ค่า pH ก่อน หลัง ก่อน หลัง ก่อน หลัง ให้ ให้ ให้ ให้ ให้ ให้ 7.56 7.38 4.44 5.65 16.3 16.3 7.69 7.78 7.57 3.99 4.07 23.5 24.0 7.99 7.76 7.70 3.69 4.02 24.3 24.7 7.56 7.82 7.73 3.34 3.42 22.9 23.6 7.80	# คุณภาพน้าบ่อทดลอง คุณภาพน้าบ่อท ทักทะ ที่กระ ขุณหกูนิ ที่ก ก่อง ก่อน หลัง ก่อน หลัง ก่อน หลัง โท้ โท้ โท้ โท้ โท้ โท้ โท้ โท้ 7.56 7.38 4.44 5.65 16.3 16.3 7.69 4.46 7.78 7.57 3.99 4.07 23.5 24.0 7.99 3.75 7.76 7.70 3.69 4.02 24.3 24.7 7.56 3.79 7.82 7.73 3.34 3.42 22.9 23.6 7.80 3.21

ตารางแสดงการบันทึกคุณภาพน้ำทั้ง 2 บ่อ

ภาพ Xiaomi Youban รุ่น UPS-01 หรือเครื่องล้างผลไม้

การผลิตฟองอากาศขนาดจุลภาค

ที่สร้างจากการตกตะกอนของไฟฟ้า

นำเครื่องมือสำเร็จรูปอย่าง Xiaomi YOUBAN รุ่น UPS-01 หลักการทำงาน คือจะแยกโมเลกุลของน้ำออกเป็น OH- และ H+ โดย H+ จะทำหน้าที่ทำลายสารเคมีสำหรับป้องกันศัตรูพืชเช่น แมลง และแบคทีเรีย ส่วน OH- จะไปรวมกับคลอรีนของน้ำเป็น Hypochlorite (ClO-) เพื่อฆ่าเชื้อโดยไม่ทำให้เกิดอันตรายกับ ร่างกาย ผิวหนัง และทำให้เกิดฟองอากาศขนาดจุลภาคขึ้น ปฏิกิริยาการเกิดไฮโปคลอไรท์ : Cl2+H2O ® 2H++ClO-+Cl-

สรุปผลการดำเนินงาน

การใช้เครื่อง Xiaomi YOUBAN รุ่น UPS-01 การสร้างฟองอากาศขนาดจุลภาคด้วยวิธี การตกตะตอนไฟฟ้ามีผลต่อการเจริญเติบโตของปลานิลซึ่งสามารถช่วยเพิ่มอัตราการรอดอยู่ ในระดับร้อยละ 96 ของจำนวนปลาซึ่งแตกตุ่างจากบ่อควบคุมที่มีอัตราการรอดอยู่เพียงร้อย ละ 79 ของจำนวนปลาที่เป็นไปตามทฤษฏีที่ได้ศึกษาแตกต่างอยู่ถึงร้อยุละ 17 ของอัตราการ เติบโต บ่อทดลองมีอัตราการเติบโตเพิ่มขึ้นถึงร้อยละ 47 ของน้ำหนักเมื่อเทียบกับบ่อควบคุม

กราฟแสดงน้ำหนักของปลาเฉลียโดยการสุ่มจำนวน 10 ตัว ทั้ง 2 บ่อ

การทดสอบทางสถิติด้วยการทดสอบสมมติฐานของกลุ่มตัวอย่าง 2 กลุ่มที่เป็นอิสระจากกัน (T-Test Independent) น้ำหนักปลานิลทั้งสองบ่อโดยใช้โปรแกรมมิ่นิแท็บ (Minitab)

Two-Sample T-Test and CI: บ่อทดลอง6, บ่อควบคุม_5 Method us mean of sierrous 5 Descriptive Statistics Pooled 95% CI for 1.262 (0.029, 2.401) Alternative hypothesis $H_1: \mu_1 - \mu_2 \neq 0$ T-Value DF P-Value 2.15 18 0.045

ผลจากการทดสอบสมมติฐานทางสถิติ ผลปรากฏว่า P-Value เท่ากับ 0.045 ซึ่งน้อยกว่าระดับนัยสำคัญที่ 0.05 จึง ปฏิเสธสมมติฐานหลักและยอมรับสมมติฐานรอง สรุปได้ว่าน้ำ หนึ่กปลานิลบ้อทดลองในสัปดาห์ที่ 7มีค่ามากกว่าน้ำหนักปลา นิลบ่อควบคม

ภาพตัวแทนของประชากรปลาบ่อทดลอง และบ่อควบคุม